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ABSTRACT 

This project work reports steady state simulation results of a plug flow reactor (PFR) system 
using DWSIM. The reaction investigated in this work was production of ethyl benzene using 
ethylene and benzene as the reactants. Ethyl benzene being one of the important raw 
materials in production of several industrially important chemicals and is often produced 

alongside with diethylbenzene as an undesired side product. In our simulation this particular 

aspect has been examined to maximize the conversion of ethyl benzene from its reactants. 

Here we have studied the effects of feed flow rate on steady state behaviour of PFR and also 

obtain the optimum feed flow rate in order to maximize the conversion and yield with special 

consideration of consecutive reactions where one product was desired and another one was 

undesired. Also we have studied the effect of reactor volume on the yield. It seems to be that 

increase in reactor volume decreases the formation of undesired product. 

Keywords: Ethylbenzene, DwSIM, property packages, yield 
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CHAPTER 1 

This chapter highlights the importance of chemical rcactors and also application of DWSIM 
in reactor design. It focuses on the uses of ethyl benzene which plays a main role in the 
netrochemical industry as halfway in the production of styrene, the raw material for the 
production of polystyrene and a common plastic material. The background of the present 
thesis work is summarized along with the objectives. 

1.1 PRELUDE 

Reactions are usually the core of chemical processes in which comparatively low-cost raw 
materials are transferred into important products, useful to mankind in various forms. 

Understanding the basics of chemical kinetics and thermodynamics are key before designing 
chemical reactors. Basically, kinetics and thermodynamics help in understanding how fast or 

slow the reaction is progressing and to to what extent the reaction will progress. Designing 

chemical reactors is a tedious process and it requires plenty of expertise starting from 
conceptualization to validation of data. Dwsim provides a platform in executing methods and 

predicts the effect of various parameters and variables reminiscent of a real-time system. 

1.2 CHEMICAL REACTORS 

INTRODUCTION 

The application of chemical reactors is very large and it is not only confined within the ambit 

of chemical industries but also petrochemical industries and any other process plants. 

Chemical kinetics and reactor design is the core to the understanding of the production of 

almost all chemicals. As mentioned in the a foresaid paragraph that designing chemical 

reactors is a tedious process and it requires plenty of expertise, starting trom 

conceptualization to validation of data. Optimization of the best possible comnbination in 

designing is the key. One particular route may yield a low reactor price but the handling of 

chemicals,post production might be very expensive. The economics of the whole plant nmust 

be studied in a great deal. 

1.3 DWSIM 

t 1s a process demonstrating instrunment for sleady stale simulation, design, pertormanee. 

optimization and planning for chemicals, spccialily chemicals,potrochemicals and netallurey 

industries. 

1 



The challenges 

The chemical process industries are best with cases over fluctuating market conditions 

gOvernment guidelines w.r.t cnvironmental issues ctc. however there is no scope for any 

sluggishness and there has always becn an cffort to increase productivity with efficient 
mechanisms in place with improved economics of the plant and the country. When 
confronted with complicatcd situations like this, process engineers have little choice but to 
resort to strong and powerful software tools to answer them. 

The opportunity 

Steady state simulation is a prevailing process engineering tool that empowers engineers to 
simulate plant performance and examine their results quickly -exploiting the modern software 

and engineering technology to optimize plant performance and effectiveness. 

The solution 

Modelling and simulation involves deep understanding of the process starting from 
conceptualization to model development to its solution. It basically gives an idea to figure out 

what actually makes the process tick. Understanding the process and troubleshooting it as and 

when required makes process simulation such an attractive area to venture into. Dwsim is a 

strong software and free software paving the way for giving ready made solution to many 

challenging issues related to any process industry in a quick and legible way. Using Dwsim 

engineers can design, simulate and troubleshoot the process as and when the need arises. 

1.4 ETHYL BENZENE 

Ethylbenzene is a colorless liquid with a syrupy, gasoline odor. It is a small aromatie 

hydrocarbon. Ethylbenzene is manufactured through an alkylation of benzene. The alkylation 

can happen in vapor or in liquid phase and both alkylation use a zeolite or an aluminium 

chloride catalyst. 

Uses of ethyl benzene: 

As dissolvable: In inks, elastic cements, varnishes and paints. 

As an anti-knock agent: Ethylbenzene is supplementary to gas as an against thump 

specialists significance it reduces motor thumping and accoleration the octane rating,. 

2 



.oeuneration of regular gas: Ethylbenzene may be infused into the ground. Shylbenzene : Assumesa critical part in the petrochemical business as a most of the way 1n Abe creation of styrene, the precursor to polystyrene, a typical plastic material. In 2012, more than 99% of ethylbenzene created was devoured in the generation of styrene. 
Cihylbenzene is much of the time found in other made items, including pesticides, cellulose acetic acid derivation and manufactured elastic. 

15 ORGANIZATION OF CHEMICAL REACTIONS 
Mostly chemical reactions are classified into two types; they are homogeneous reaction and 
heterogeneous reaction. Heterogeneous reactions are further classified into four different 
types; they are fluid-fluid reactions, non-catalytic gas-solid reactions, catalytic gas-solid 
reactions and catalytic gas-liquid-solid reactions. 

The reactions occur between two immiscible phases i.e., gas-liquid or liquid-liquid is called 

as fluid-fluid reactions. These types of reactions generally take place at the interface. The 
overall reaction rate depends on the miscibility of the reactant available interface area and 
mass transfer rates. 

The reactions like combustion, gasification of coal and roasting of pyrites; which generally 
take place on the solid surface are called non-catalytic gas solid reactions. The reaction 

occurs when the gaseous reactants are transported to the interface where it reacts with the 
solid reactant. The reaction rate depends on surface area and the mass transfer rate of the 
gaseous reactants. 

The reactions in which both reactant and products are gaseous are called catalytic gas-solid 

Sur+ace. Porous particles are generally used to provide large surface area to facilitate the 

reaction The reaction rate depends on diffusion rate of reactant into the interior of the 

catalyst pore and diffusion of product out the catalyst pore. 

1he reactions in which three states are involved i.e (solid,liquid and gas) are called catalytic 

Bas-liquid-solid reactions. Here the solid surface acts as a catalyst and has a special reacting 

3 
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sites. Solid surface normally covered with liquid reactants and gaseous reactants are diffusi0n 

onto the catalytic site. 

1.6 GENERAL DESCRIPTION AND REACTION TYPES 

Chemical reactions relating to the chemical, petrochemical and oil industries are executed in 

distinct apparatus so-called reactors. There are distinct types of reactors projected to face 

eNceptionally diverse operating circumstances., both in relationships of the nature of the 

chemical species involved(reactants and products of the reaction) and of the physical 

circumstances under which they operate 

In general , a chemical reactor needs to be able to carry out at least three functions: 

Offer the essential residence time for the reactants to complete the chemical reaction; 

" Permit the needed heat exchange; 

To enable the chemical reaction, it brings all the phases into near contact. 
Consequently, reactor categories range from huge measurement ceaseless reactors, similar to 

those embraced for synergist breaking responses , particularly for oil refineries, gadgets of 

unobtrusive measurements, as spasmodic mixed reactors for advanced microelectronic 

applications and reactors of minuscule measurements(small scale reactors), intended for 

biomedical establishments or for in situ generation of greatly dangerous or perilous mixes. 

Converters and burners, reactant or generally, embraced for vitality generation can likewise 

be recorded among reactors. 

To classify a reactor, the quantity of stages in the reactor itself, whether there are unsetting 

frameworks and the method of operation(constant reactor, semi-nonstop or intermittent) 
crucial to be complicated. It ought to additionally be noticed the most synthetic reactors are 

furnished with warmth trade mechanically assembly as outer coats or inwards curls with a 

liquid coursing through them to go about as a warm vector to permit both warnmth supply and 

evacuations. 
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1.7 BACKGROUND OF PRESENT RESEARCH WORK 

Ethylbenzene is an important raw material for the production of various other industríally 

important cheemicals. Its industrial importance has attracted various researchers acrOSS the 

dlobe to study their chemical synthesis using PFR configuration. During synthesis it is almost 
imperative that some by products will get produced from the stoichíometry. In production of 
ethylbenzene, diethyl benzene is produced as a byproduct which is undesirable. The reactions 

involved are basically consecutive reactions. Presence of small amount of diethyl benzene 
generally ideas to cross polymerization and requires to be avoided. In cases like this , reactor 
design becomes challenging simply because both yield and conversion need to be considered. 

1.8 RESEARCH OBJECTIVES 

To study the effects of feed flow rate on steady state behaviour of PFR by using 
alkylation of benzene reaction and also to obtain optimum conditions in order to 
maximize the yield of ethylbenzene where one product is desired and another one is 
undesired. 

To study the effect of volume on steady state behaviour of PFR by using alkylation of 
benzene reaction and to obtain the optimum conditions in order to maximize the yield 
of ethylbenzene.. 

> To study the simulation results by using different thermodynamic packages and 
Compare them with the results. 
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Coming to the research and studies on ethylbenzene and its yield, various research had been studied on ethylbenzene. 

ane khelebnikova (2016), her paper and research considers the benzene alkylation with hvulene model development with the use of zeolite catalyst. A list of reactions occurring in the alkylation reactor was made and the the thermodynamic possibility of determination ofv hese reactions by the change of gibbs energy was defined. The paper presents the bvdrocarbons transformation scheme, which includes the grouping of components on the hasis of their reactivity and the degrees of compensation values of the corresponding reactions. 

Prasanna kumar sahoo(2011), studied about the optimization of the production of 
ethylbenzene by liquid-phase benzene alkylation. This process involves the reaction of 
benzene with ethylene to form ethylbenzene. Ethylene reacts with ethylbenzene to form 
undesired product diethyl benzene, if the temperature of reactor or concentration of ethylene 
are high. Diethyl benzene is the highest-boiling component in the system;it comes out the 
bottom of the distillation columns. The economic optimum steady-state design is developed 
that minimizes total annual cost. Thus it provides a classic example of an engineering design 
and optimization of a process. 

John D. carson (1967), studied about the analog simulation of a plug flow reactor. He 

Pesents the importance of analog and digital computers in the field of reaction kinetics. The 
dalog computer is used to simulate a chemical reaction, the hydrolysis of acetic anhydride. 
The hydrolysis reaction takes place in a tubular reactor. The reactor system is used to obtain 
experímental data for the hydrolysis reaction. The data is obtained at reactor temperatures 

between 75 and 100°F. 
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CHAPTER 3 

31 DIFFERENT TYPE OF CHEMICALREACTORS 

3.1.1 BATCH REACTOR 

The established bunch reactor is a splendidly blended vessel in which reactants are changed 

over to items throughout a clump cycle. All variables change rapidly with time. The reactants 

are charged into the vessel. Heat and/or impetus is added to launch response. Reactant 

fixations lessening and item focuses increment with time. Temperature or weight is controlled 

by coveted time direction. Bunch time is likewise an outline and working variable, which has 

a solid effect on profitability. 

PLUG FLOW REACTOR 

Temperature profiles are made so that change and yield targets are accomplished while not 

surpassing warmth exchange limit impediments. These ideal temperature profiles rely upon 

science. For instance, if the response is reversible and exothermic, the temnperature profile 

may increase to a high temperature to get the responses going and afterward drop off with 

time to keep away from the decline in the compound balance consistent at high temperature. 

On the off chance that the response is reversible and endothermic, the temperature profile 

would ascend to the most elevated conceivable temperature as fast as could be allowed on the 

grounds that the synthetic harmony steady increments with temperature. 

On the off chance that all the reactants are charged to the reactor, the reactant focuses are at 

Iirst expansive, which implies that the response rate is high and the warnmth exchange burden 

Is high toward the start of the bunch cycle unless the temperature is kept low. The beginning 

nigh reactant fixation issue can be evaded by utilizing a "bolstered bunch reactor." Some 

material is at first charged to the reactor, yet the majority of the reactant is sustained over the 

Span of the cluster cvcle. This causes the volume of the fluid in the reactor to increment with 

ume, so volume and in addition arrangements and temperatures are untouched tluctuating, 

3.1.2 CONTINUOUS STIRRED-TANK REACTOR 

Ihe fluid in the reactor is thought to be flawlessly blended, that is with no spiral, hub or 

Precise slopes in properties (temperature and arrangement). The itenm stream has a piece and a 

8 



orature that are precisely the same as the substance of the fluid all through the vessel. This is constantly genuine both under consistent state conditions and progressively anytime 
This normal for a CSTR instantly creates a characteristic shortcoming of the CSTR kind of reactor, that 1s, he convergence of reactant in the vessel is the same as the amassing of waactant in the item. The amassing of reactant is contrarily identified with transformation 

21.3 TUBULAR PLUG FLOW REACTOR 
pluug flow reactor consists of a long straight pipe in which the reactive fluid transits at steady state A PFR is similar to CSTR in being a flow reactor.but is different in its mixing characteristics. PFR is different from batch reactor in being a flow reactor,but is similar in the progressive change of properties with position replacing time. These features are explored further in this section,but first elaborate the characteristics of a PFR as follows: 

1. The flow through the vessel both input and output streams are continuous,but not 
necessarily at constant rate;the flow in the vessel is plug flow. 

2. The system mass inside the vessel is not necessarily fixed. 
3. There is no axial mixing of fluid inside the vessel. 
4. There is complete radial mixing of fluid inside the vessel(i.e., in the plane 

perpendicular to the direction of flow); thus, the properties of fluid including its 
velocity are uniform in this plane. 

S. The density of the flowing system may vary in the direction of flow. 
6. The system is operating at steady state conditions. 
I. The reactor is assumed to be isothermal. 

MATERIAL BALANCE 
In a plug flow reactor the composition of the fluid varies from point to point along a 

flow path; consequently, the material balance for the reaction component must be 
made for a different element of volume dV. Thus,for reactant A,the balance equation 

becomes 

Knput = output + disappearance by reaction + accumulation 

T the system is at steady state,then accumulation tends to be zero. 
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PERFORMANCE EQUATION OF PFR 

From the figure 

CAD 
Fao 

Input of A,moles/time = FA 

Output of A,moles/time = FAt dFA 

Disappearance of A by reaction,moles/time =(-rA)dV 

Distance thraugh reactor 

Therefore the overall balance equation is as follows: 

F, = (F+ dF) + (-rJdV 

It may be simplify into 

FA,dX, = (-r)dV 

CAS Fa 

1nis, then, is the equation which accounts for A in the differential section of the 

Teactor of volunme dV. For the reactor as a whole the expression must be integrated. 

NOW FA the feed rate is constant, but r is certainly dependent on the concentration or 

vonversion of materials, Grouping the terms accordingly, we obtain 
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CHAPTER 4 

4.1 INTRODUCTION 

Ethylbenzene is an organic compound with the formula C,H,CH,CH, The aromatic hydrocarbon is important in the petrochemical industry and as an intermediate in the production of styrene, which is used for making polystyrene, it is a common plastic material. Also present in small amounts in crude oil, ethylbenzene is produced by combining benzene and ethylene in an acid-catalysed chemical reaction. It is used as a solvent for aluminium bromide in anhydrous electro deposition of aluminium. Ethylbenzene is an ingredient in some paints and solvent grade xylene is nearly always contaminated with a few per cent of ethylbenzene. 

4.2 PROPERTIES OF ETHYL BENZENE 

Appearance : Clear, colourless liquid 
Molecular formula : CçHo 
Molar mass : 106.17 g mnol 

Density : 0.8665 g/mL 
Melting point : -95 °C, 178 K, -139 °F 

Boiling point: 136 °C, 409 K, 277 °F 

ETHYL BENZENE 

Solubility in water:0.015 g/100 mL (20 °C). 

4.3 PRODUCTION OF ETHYL BENZENE 

We continue to investigate the feasibility of constructing a new, grass-roots, 80,000 tonne/y, 
Cnylbenzene (EB) facility (99,8 mol%), using benzene and ethy lene as raw materials. As the 
mal part of the feasibility study, we would like you to study the details of the reactor and 
separation section of proposed plant and then optimize the complete process. Your final 
design should be an optimized process and should include all unit operations necessary to 
produce the desired amount and purity of ethyl benzene. 
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Benzene 

Ethylene 

4.3.1 Mixed Liquid-Vapor Phase Zeolite Catalyst Process 

Process Description 

This process involves the use of a Y zeolite catalyst, capable of converting benzene and dilute 

ethylene to ethylbenzene. The catalyst itself has excellent resistances to sulfur and water and 

also has good regeneration qualities, all the while ensuring great ethylene conversion, good 

ethylbenzene selectivity and longer operational period. The alkylation reactions take place in 

an alkylation reactor which primarily consists of two sections: the catalytic distillation section 

and the standard distillation section. The catalytic bed is found at the top of the column. 

Benzene is fed as a liquid from the top of the column while the ethylene is fed as a vapor 

from the bottom of catalytic section. This counter-current action causes the ethylene to 

rapidly dissolve in the benzene liquid phase and react to form ethylbenzene on the catalyst 

Sites. Since, the reaction is extremely exothermic, the energy is used to cause distillation of 

the products, namely, ethylbenzene & poly-ethylbenzene (PEB). The alkylation reaction is 

carried out at a temperature of 140-185 °C and a pressure of 1.6-2.1 

MPa., After separation of the PEB. the transalkylation reactions take place is another reactor. 

Safety & Environmental Issues 

Ethylbenzene 

*CIe are no significant environmental and safety issues with this process as it operates at a 

Vey low temperature and pressure.However, it is important to note that this process still 

POduces residual oil as one of its final by-products which can cause significant pollution and 

therefore, should be dealt properly by recycling or reusing it for other chemical processes. 

as it can caause damage to the environment. Additionally, the catalyst, albeit it has a long lifetime, still needs to be properly disposed oft, 

Economie Issues 
1) The major cost in this process comes fron the use of expensive catalysts that are crucial to 

the process. 
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2) Anothcr important cconomic issue to consider would be the design and manufacture of the 

alkylation reactor. The alkylation would serve the dual purpose of housing the catalytic 

renction and standard distillation. Combining both these processes together means that the 

reactor column has to be designed from scratch leading to increased capital costs. 

A.3.2 Vapor-Phase Zcolite Catalyst Proccss 
Process Description 

The Mobil-Badger ethylbenmzene process is considered to be the most successful vapor phase 
technology. In this process, fresh benzene stream is vaporized and pre-heated to a certain 

temperature; after which it is fed to multistage of fixed-bed reactor containing the zeolite 
catalyst. Moreover, the ethylene stream is introduced to the reactor through multiple stages to 
enhance contact between the reactants. The alkylation occurs in the vapor phase at a 
temperature range from 400 °C to 450°C and the pressure for each plant is usually between 
2-3, MPa. The poly ethyl-benzene (PEB) recovered from the distillation column is mixed 

with benzene. After heating and vaporizing the mixture, it is fed into a transalkylator where 
the PEB reacts with the benzene to form additional ethylbenzene. The effluent from the 

reactor, consisting of unreacted benzene, PEBs, trace impurities and ethylbenzene, is fed into 
a "benzene column" for distillation. Benzene is removed fom the top of the column, along 
with light hydrocarbons. These are stripped in an overhead stripper with the benzene being 

recycled to the reactors again, while the light hydrocarbons are vented to be used as a fuel. 
The presence of lipght hydrocarbons can be attributed mostly to the ethane in the ethylene feed 

and non-aromatic components that decompose in the fresh benzene feed. The bottoms 
product from the benzene column is fed in the ethylbenzene column to recover ethylbenzene 

Tom the top, while the bottoms product consisting of PEB is fed into a PEB column for 
Turther distillation. Thiscolumn generates PEB as an overhead product which is recycled to 

he transalkylation for the production of ethylbenzene. The bottoms product is known as 

"residue" and is usually found in very small quantities and 
diso used as a fucl. The catalyst in this process is zeolite based and "is less sensitive to 
wet, sulfur and other poisons than the Lewis acid catalysts". Due to coke formation 
overtimne as a result of high temperature, the catalyst becomes deactivated. Hence, it is 
important to regenerate the catalyst from time to time. This regeneration takes up-to 36 hours 
and is important after every 6-8 weeks of operation. Therefore, it is important that the process 

14 



huN two parnllel rcuctors, where one reacton Uned when te other is taken out of production 
bccause entalyxt repeneratlo). 

Safety & bnvironnental Isues 

lhe alkylation renction taken place at higlh tempernture (400 450C) and high presure (2 
Mba) 1his means that the column would need to be constructed out of special materials of 
oonstruction in order to Nafely nccommodate sueh high pressures and tenperntures. 

)) Formantion of coke on the catalyst means hat it needs to be regenerated from time to time. 

This repeneration is done by the burning the catalyst to form C02. CO2 is a greenhouse gas 

and causes significant environmental damage by destroying the ozone layer. 
) High temperatures also result in side-reactions of byproducts, such as aromatics, are 

known to be carcinogenic and also mutagenic. 

Economic Issues 

I) In order to regenerate the catalyst, specific regeneration equipment would be required 

which increases the capital cost of the plant [6]. 

2) Since the reactors are taken ofT for catalyst regencration, a substitute reactor needs to be 

present to continuc production. This also causes the capital cost to be increased. 

3) High temperatures and prcssures mcan that the cquipmcnt necds to be made out of spccial 

materials of constructions which can be cxpensive, leading to increased costs. 

4) Lastly, high temperatures and pressures also cause an increase in energy costs which lead 

to an increase in operating costs. 
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CHAPTER 5 

In thhis chapter the simulation methodology is discussed. 

5.1 DWSIM SOFTWARE 

Dwsim version 6.4.8 was used for the simulation work. 

5.2 PROPERTY METHOD 

Chao-Seader, NRTL, Peng-Robinson, Grayson-Streed, Lee-Kesler-Plocker thermodynamic 

models were used as the property method. 

5.3 PROPERTY PACKAGE DESCRIPTIONS 

Equations of State (EOS) 

Equation of State models have proven to be very reliable in predicting the properties of most 
hydrocarbon based fluids over a wide range of operating conditions. Their application 

focuses on primarily non-polar or slightly polar components. 
GCEOS 

The GCEOS model allows you to define and implement your own generalized cubic equation 

of state including mixing rules and volume translation. 

Chao Seader & Grayson Streed Models 

SIMULATION WORK 

Ihe Chao Seader and Grayson Streed methods are older, semi-empirical methods. The 

Jrayson Streed correlation is an extension of the Chao Seader method with special emphasis 

On nydrogen. Only the equilibrium data produced by these correlations is used by HYSYS. 

he Lee-Kesler method is used for liquid and vapour enthalpies and entropies. 

Chao Seader 

uie Chao Seader (CS) method for heavy hydrocarbons, where the pressure is less than 

10342 kPa (1500 psia), and temperatures range between -17.78 and 260°C (0-

500°F). The CS property package is used for the stean systems. The CS property package 

can also be used for three-phase flashes, but is restricted to the use of pure H20) for the 

Second liguid phase. 
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The CS method, though limited in scope, may be preferred in some instances. For exarmple, 

s is recommended for problems containing mainly liquíd or vapour H20 because the 

property package includes special correlations that accurately represent the steam tables. The 

following tables give an approXimate range of applicability for CS method and under what 

conditions CS is applicable. 

Method 

CS 

Temp (°F) 
0 to 500 

Conditions of Applicability: 

Temp (°C) 

If CH4 or H2 is present: 

For all hydrocarbons (except CH4): 

-18 to 260 

When predicting K values for: 

Aromatic Mixtures 

Parafinic or Olefinic Mixtures 

Pressure (psia) 

<1,500 

Pressure (kPa) 

<10,000 

0.5<Tri<1.3 and Prmixture <0.8 

molal average Tr <0.93 
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CH4 mole fraction <0.3 

mole fraction dissolved gases <0.2 

liquid phase aromatic mole fraction <0.5 

liquid phase aromatic mole fraction >0.5 

Chao-Seader (CS) uses the CS-RK method for calculating VLE and the Lee Kesler 

method for calculating Enthalpy and Entropy. The vapour phase fugacity coefficients are 
calculated with the Redlich Kwong equation of state. The pure liquid fugacity coefficients are 

calculated using the principle of corresponding states. Special functions are incorporated for 

the calculation of liquíd phase fugacities for N2, CO2 and H2S. These functions are restricted 

to hydrocarbon mixtures with less than five percent of each of the above components. 

As with the Vapour Pressure models, H20 is treated using a combination of the steam tables 

and the kerosene solubility charts from the API Data Book. This method of handling H20 is 

not very accurate for gas systems. Although three phase calculations are performed for all 
Systems, it is important to note that the aqueous phase is always treated as pure H20 with 

these correlations. 



Grayson Strecd 

The GS correlation is an extension of the Chao-Scader method with spccial cmphasis on H2. 

Only the equilibrium results produccd by thesc correlations arc uscd by HYSYS. The 

Grayson-Streed correlation is recommended for use with systems having a high concentration 

Cu because of the special treatment given H2 in the devclopment of the model. The GS 
correlation can also be used for simulating topping units and hcavy ends vacuum 

applications. This correlation may also be slightly more accurate in the simulation of vacuum 

towers. The Grayson-Streed (GS) property package can be used for threc-phase flashes, but is 

restricted to the use of pure H20 for the second liquid phase. 

The following tables gives an approximate range of applicability for the GS mcthod and 
under what conditions the method is applicable: 

Method 

GS 

Temp (°F) 

0 to 800 

Conditions of Applicability: 
For all hydrocarbons (except CH4): 

If CH4 or H2 is present: 

When predicting K values for: 

Paraffinic or Olefinic Mixtures 

Aromatic Mixtures 

Temp (°C) 

-18 to 425 

Enthalpy and Entropy. 

Pressure (psia) 
<3,000 

Pressure (kPa) 

<20,000 

0.5<Tri<1.3 and Prmixture <0.8 

molal average Tr <0.93 
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CH4 mole fraction <0.3 

mole fraction dissolved gases <0.2 

Grayson-Streed (GS) uses the GS-RK to calculate VILE and Lee-Kesler to calculate 

liquid phase aromatic mole fraction <0.5 

liquid phase aromatic mole fraction >0.5 

The vapour phase fugacity coefficients are calculated with the Redlich Kwong eguation of 

state. The pure liquid fugacity coefficients are calculated using the principle of corresponding 
states. Modified acentric factors are included in HYSYS' GS library for most components. 
Special functions are incorporated for the calculation of liquid phase fugacities for N2, CO2, 

and H2S. These functions are restricted to hydrocarbon mixtures with less than five percent 
of each of the above components. 
s With the Vapour Pressure models, H20 is treated using a combination of the steam tables 

and the kerosene solubility charts from the API Data Book. This method of handling H20 is 



not very accurate for gas systems. Although three phase calculations are performed for all 

Systems, it is important to note that the aqueous phase is always treated as pure H20 with 

these correlations. 

NRTL 

The Non-Random-Two-Liquid (NRTL) equation is an extension of the Wilson equation. It 

uses statistical mechanics and the liquid cell theory to represent the liquid structure. It is 

capable of representing VLE, LLE, and VLLE phase behaviour. The NRTL property package 

is used for chemical systems and HF Alkylation with highly non-ideal chemicals. 

NRTL uses the following calculation methods: 

For liquid: 

" NRTL method for VLE 

"Cavett method for Enthalpy and Entropy 

For vapour: 

" Ideal Gas, RK, Virial, Peng Robinson, and SRK methods for VLE 

"Ideal Gas, RK, Virial, Peng Robinson, and SRK methods for Enthalpy and Entropy 

Like the Wilson equation, the NRTL is thermodynamically consistent and can be applied to 

tenary and higher order systems using parameters regressed from binary equilibrium data. It 

has an accuracy comparable to the Wilson equation for VLE systems. The NRTL equation in 

HYSYS contains five adjustable parameters (temperature dependent and independent) for 

Titting per binary pair. The NRTL Combines the advantages of the Wilson and van Laar 

equations. 

*Like the van LLaar equation, NRTL is not extremely CPU intensive and can represent LLE 

quite well. 

" Unlike the van Laar equation, NRTI can be used tor dilute systems and 

hydrocarbon-alcohol mixtures, although it may not be aS good tor alcohol-hydrocarbon 

Systems as the Wilson equation. 

" The five adjustable parameters for the NRTL equation in HYSYS: are the aij, aji, bij, bji, and 

aij terms. 
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Note: Due to the mathematical structure of the NRTL equation, it can produce erroneous 

multiple miscibility gaps. The equation uses parameter values stored in HYSYS or any user 

supplied | value for further fitting the equation to a given set of data. 

Peng-Robinson 

The 
Peng-Robinson PR) model is ideal for VLE calculations as well as calculating liquid 

densities for hydrocarbon systems. Several enhancements to the original PR model were 

made to extend its range of applicability and to improve its predictions for some non- ideal 

systems. However, in situations where highly non-ideal systems are encountered, the use of 

Activity Models is recommended. 

The PR property package rigorously solves any single-, two-, or three-phase system with a 

hich degree of efficiency and reliability and is applicable over a wide range of conditions: 

"Temperature Range >-271°C or -456°F 

"Pressure Range < 100,000 kPa or 15,000 psia 

The PR property package also contains enhanced binary interaction parameters for all library 

hydrocarbon-hydrocarbon pairs (a combination of fitted and generated interaction 

parameters), as well as for most hydrocarbon-non-hydrocarbon binaries. For non-library or 

hydrocarbon hypo components, HC-HC interaction parameters are generated automatically 

by HYSYS for improved VLE property predictions. 

Lee-Kessler Plocker 

1ne Lee-Kesler Plocker model is the most accurate general method for non-polar substances 

ad mixtures and is recommended for Ethylene Towers. LKP uses the Lee- Kesler-Plocker 

Inethod to calculate VLE and uses the Lee Kesler method to calculate Enthalpy and Entropy. 

Plöcker applied the Lee Kesler equation to mixtures, which itself was modified from the 

BWR equation. 
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54STEADY STATE SIMULATION 
s4.1. Chemical Kinetics 

Ihe specitie chemistry used to understand the steady state behavior of CSTR and 

demonstrate the use of DWSIM is the reaction of ethylene (E) with benzene (B) to form the 

tàvored produet ethylbenzene (EB). There is a repeated reaction that produces an unwanted 

product di- ethyilbenzene (DEB). A third reaction association's benzene and diethyl benzene 

to form ethylbenzene. 

E+B EB 

E+ EB ---> DEB 

DEB + B --> 2EB 

RI=(C) (C) (1.528x106) e(-71130000)/RT 

R2= (CE)(CEB) (2.778×103)e (-83680000)/RT 

The reactions follow in the liquid phase and are assumed to be ireversible. The reaction 

rates of the three reactions are assumed to be those given here: 

R3-(CDEB)(C)(0.4167)e(-62760000)/RT 

----> (3.1) 

5.5 SIMULATION SETUP 

--->(3.2) 

--->3.3) 
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’(3.4) 

’ (3.5) 

The units of R are kmol s' m³, Concentrations have units of kmol/m'. Activation energies 
have units of Jkmol. Temperature is in degrees Kelvin . C� is the concentration of ethy lene; 
Cp is the concentration of benzene. 

’ (3.6) 

B IS the concentration of ethyl benzene; Cpepis the concentration of diethylbenzene. 

The step by step procedure to make the desired arrangement is as tfollows. 

1) First, afler opening the Dwsim software, we should euter the required compounds 
used in simulation work. 
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5) 
After the simulation setup, enter the reactions which takes place inside the reactor. Since, we already seen that there are three reactions takes place inside the reactor. 
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solution for above problem is optimizing the fced flow rate by using the Dwsim by 
nino the one of the feed flowrate constant and varying the other onc. 

.2 Effect of reactor volume 

actor provides sufficient residence time to the reactants where the reactants are converted 
o products. In case of exothermic reaction heat removal is necessary in that case reactor 

vides sufficient reactor area for jacketed cooling. Increasing the reactor volume provides 
ter cooling but aggregate the residence time and capital cost. Decreasing the reactor 
lume may lead to the process become uncontrollable and it lead to the formation of 

desired product. 
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CHAPTER 6 

6.1 EFFECT OF FEED FLOW RATE 

First, we do the optimization of feed flow rate, for this we need to fix other quantities like 

reactor volume and temperature. From the literature review we have a good jdea about 

reactor temperature and reactor volume which may or maynot be optimum values. 

Tae take the feed flow rate of ethylene is F(E)=0.2 kmol/s and the reactor volume be 
=100m². 

By varying the benzene flow rate 

simulation as follows. 

As we know, DWSIM has various inbuilt thermodynamic packages so finding best one is 

litle bit difficult. So, we simulate the process using different thermodynamic packages and 
atlast we should select the best thermodynamic package which gives better yield than other 
thermodynamic packages. 

thermodynamic packages 
IABLE 6.1 Comparison of benzene flow rate with ethyl benzene flow rate for different 

Ethylene Benzene 
(feed) 
(kmo/s) 

(Feed) 
(kmoVs) 
0.2 

0.2 

0.2 

0.2 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Chao-sea 
der 

F(B) = 0.3, 0.4, 0.5, 0.6, 0.7(kmol/s) and run the 

0.01045 

0.008088 4.08*10-6 

0,0301407 

Ethyl benzene(kmol/s) 

NRTL 

RESULTS AND DISCUSSION 

4.93*1 0-6 

0.012757 5.66*10-6 

8,90*1 0% 

0.01725098.20*104 
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Peng Grayson 
Robinson Streed 

0.00378 

0.00493 0.01076 

0.00605 

0.00715 

0.0083 

0.00824 

0.0262 

0.01553 

0.0146 

Lee-kesle 
r-plocker 

0.00306 

0.0144 

0.00493 

0.0209 

0.00676 



Rthylene 

(leed) 
(kmol/s) 

0.2 

TNLN 0.2 ('ompariNOn of bewzene low rate and Yield of ctbylbenzene for different 

thermody namie packageN 

0.2 

0.2 
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0.2 

tl yieklot th lenzone eodi to tle lomula, 

0,2 

Beuzene 

(fecd) 
(kno/s) 

0.3 

0,4 

0.5 

0.0 

0,7 

Moloy ot etlivenzcue loucl 

Ckapes le Nlown below. 

(hao 
Seader 

2.69% 

2.892 

3.625 

5.023 

Molen of beuzene lel 

2.4644 

% Yicld of Ehylbenzene 

NRTL 

0,00132 

0.001198 

0.001132 

0.001483 

0.001171 
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IPeng 
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1.26 

1.23 

1.21 

1.191 

Grayson 

I.117 

2.76 

2.69 

3.49 

2.588 

2.08 
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.eld of ethybernzene 
Benzene flow rate vs Yield of Ethylbenzene 

Cne-Se:e 

Gravsor-Streeo 

Benzerefeedikmols 

Inferences from table and graphs 

1-**ser-ccre 

Figure 6.1 Benzene flow rate vs l%yield of ethylbenzen e using different therm odynamic 
packages 

The graph shown above shows the plot of benzene feed flow rate versus yield of 

einylbenzene( desired product) using five different thermodynamic packages. Since. our 
primary product is ethylbenzene and our motive is to increase the yield of ethyIbenzene. By 
analyzing the plots shown above, CHAO-SEADER model yields maximum amount of 
cnylbenzene and it shows the favourable variations. 

nce, we already discussed about the thermodynamic packages and their properties The 

son behind that Chao-Sedaer model shows favourable variation is, CS is recommended for 

problems containing mainly liquid or vapour H,0 because the property package includes 

special correlations that accurately represent the steam tables. Also, our operating cond1tions 

ies within the operating range of Chao-Seader model 

By analysing the CHAO-SEADER model, the yicld of ethylbenzene increases with nCreases 

in benzene flow rate upto benzene flow rale becomes 06 kmols After this low rate, the 

yield starts to decrease. So., we can take F(B) 06 kmols as a oplmum benzene feed tlow 

Tale which yields maximum amount of cthylbenzene 
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EFFECTOF FREACTOR VOLUME 

Similarly like above here we fixing the feed flow rate of benzene F(B)=0.4 and ethylene 
F(E)-0.2 kmol/s, 

By varying the 

simulation and obtained stream results as follows. Run the simulation for different 

thernodynamic packages and note down the results. 

Volume of 

reactor(m') 

RLE 6.3 Comparison of Volume of reactor with Diethyl benzene flow rate by using 

different thermodynamic packages. 

100 

200 

300 

400 

500 

600 

700 

reactor 

800 

900 

volume V= 100, 200, 300, 400, 500, 600, 700, 800, 900 and run the 

Chao-Seade 

r 

4.51*10-7 

3.92*10-7 

3.66*10-7 

3.40*107 

3.11*10-7 

2.97*10-7 

2.77*10-7 

2.57*10-7 

2.41 *107 

Diethyl benzene(kmol/s) 

NRTL 

1*10-13 

1*10-13 

1*10-13 

1*10-13 

2.797*10-13 

1*10-13 

1 *10-13 

1*10-13 

I*10-13 
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2.831 *107 

2.828*10-7 
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2.831 *1l0-7 

2.802*10-7 
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4.47*10-7 

4.92*10-7 

4.89*10-7 

4.87*10-7 

3.81*10-7 

3.66*10 

3.53*10 



TABLE 64 Comparison of Volurne of reactor with the Yes s dithy benvene try 
different thermody namic packages 

Saomem) 
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Chas 
Seader 
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98165 
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model 
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By carefully analyzing the tables and graphs we could have the following conclusions. 

Since, dicthyl benzene is our undesired product. So we want diethyl benzene to be in low 
anount at any cost. From the above plots, it is clear that all the thermody namic packages 
Cxcept Chao-Seader shows irregular variations with increase in volume of reacto. 

From the above discussion about property packages, we would conclude that NRTL can be 
applied to a systems with wide range of boiling points. But, in our systems the boiling points 

O lhe components doesn't vary much. ATter analysng the property packages, we can 

Conclude that. the properties of the Chao-Seader model matches the operating conditions of 
Our system and since Chao-Seader is specialised tor hydrocarbon systens These are tha 

eason behind that Chao-Seader model shows favourable variations. 



Chao-Seader model depicts that increases in volume of reactor leads to decrease in diethyl 
vield which is a favourable variation to us. Thus, we can conclude that Chao-Seader 

odel shows favourable variations between volume of reactor and diethyl benzene. 
benzene 
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CHAPTER 7 

This project work reports steady state simulation of a plug flow reactor system using 

DWSIM. The reaction investigated in this work was production of ethylbenzene using 

ethylene and benzene as the reactants. Ethylbenzene being one of the important raw 

materials in production of several industrially important chemicals 

alongside with diethyl benzene as an undesired side product. 

CONCLUSION 

In our simulation, this particular aspect has been examined to maximize the conversion of 

ethyl benzene from its reactants. Here we have studied the effect of feed flow rate on steady 

state behaviour of PFR and also obtained the optimum feed flow rate in order to maximize 

the yield with special consideration of consecutive reactions where one product was desired 

and another one was undesired. 

is often produced 

Here, we have simulated the system with five different thermodynamic packages namely 

Chao-Seader, Peng-Robinson, NRTL, Grayson-Streed and Lee-Kesler-Plocker. Among the 

thermodynamic packages, Chao-Seader model shows favourable variations for both the plots. 

yield of ethyl benzene than other thermodynamic packages. 

According to Chao-Seader model, yield of ethylbenzene increases with increases in benzene 

feed flow rate upto benzene flow rate becomes 0.6 kmol/s. At benzene flow rate of o.6 

kmol/s, the yield reaches maximum and then decreases. Similarly, yield of diethyl benzene 

decreases with increases in volume of reactor. Thus, Chao-Seader model produces better 
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FUTURE SCOPE 

As a continuation of this work, it can be extended in studying the dynamic simulation aspects 
with various controlling mechanisms in place and to figure out controller parameters and 

settings. Similarly, different reactor volumes (variable hold-ups) may also be used in series to 

study their effect in overall conversion of this reaction and optimize the variables. 
Here we simulate only for an isothermal PFR., But. in future we can simulate for a 

non-isothermal PFR and can also study about the temperature effects. 

Here we simulate the system by using five thermodynamic packages. In future studies, we 

can simulate with some other thermodynamic packages and compare them. 
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